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Abstract
We study the coherent control of two interacting electrons in a coupled-
quantum-dot system with external electric fields. The localization and
entanglement of the two electrons are demonstrated through analytic and
numerical calculations of the populations of the three two-particle states. We
show that the maximally entangled Bell state can be prepared and maintained
with a pulse of an oscillatory electric field. Although the effective Coulomb
repulsion between the two electrons is very strong, dynamical localization can
fully build up in the system parameter manifold which corresponds to the exact
crossing of the quasienergiesdeveloped from the unperturbednearly degenerate
levels.

1. Introduction

Coherent control of quantum systems has been attracting considerable attention in recent years.
A basic ingredient of quantum control is field-induced localization of a single electron in a
double trap [1]. The initial efforts were devoted to acquiring conditions for maintaining existing
localization with an oscillatory electric field, and for creating and maintaining localization with
a semi-infinite oscillatory field [2, 3]. It was found that in investigations, localization can be
approximated by a two-state model consisting of the lowest symmetric and antisymmetric
states of the double-trap potential [4, 5]. In this case, perfect localization can be achieved with
a strong time-periodic electric field that causes the Floquet quasienergies to be degenerate.
Later, localization in superlattice systems [6], in dissipative environments [7], in molecular
systems [8], induced by ultrashort laser pulses, and in trapped Bose–Einstein condensates [9],
by means of oscillatory magnetic fields, was studied.

When two or more interacting particles are present, apart from the highly nontrivial
problem of whether the strong many-body interaction can be overcome for the particles
to create and preserve localization, the possibility of entanglement of the many-body
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wave functions arises. Entanglement is an essential ingredient in any scheme of quantum
information processing such as quantum information cryptography and quantum computation,
and therefore it is a problem of great current interest to find or design systems where
entanglement can be manipulated [10]. Most of the theoretical and experimental activity
until now has been associated with atomic and quantum-optic systems. Two-particle [11, 12],
three-particle [13], and four-particle [14] entanglement have been successfully demonstrated
experimentally for trapped ions, Rydberg atoms, and cavity QED. However, a further increase
of the number of entangled particles in these systems is expected to be a severe experimental
challenge. Recently, solid-state realizations of the entanglement have received increasing
attention due to the fact that semiconductor nanostructures such as quantum dots (QDs) and
double quantum dots (DQDs), with well-defined atom-like and molecule-like properties, have
been fabricated and studied by many groups [15, 16]. Kane [17] has proposed a scheme which
encodes information onto the nuclear spins of donor atoms in doped silicon electronic devices
where externally applied electric fields are used to perform logical operations on individual
spins. Loss and DiVincenzo [18] have presented a scheme based on spin exchange interaction
effects. More recently, Imamogluet al [19] have considered a quantum computer model based
on both electron spins and cavity QED which is capable of realizing controlled interactions
between two distant quantum dots. Quiroga and Johnson [20] have suggested that the resonant
transfer interaction between spatially separated excitons in quantum dots can be exploited to
produce maximally entangled Bell states.

In the present work we study the coherent control of the quantum system consisting of
two interacting electrons in a coupled quantum dot. With the initial state chosen to be in
the spin-singlet space, the dynamics is reduced to be confined to a three-dimensional Hilbert
space, in which the three basis vectors are equivalent to the eigenstates of the ˆz-component,
Ĵ z, of theJ = 1 angular momentum operator. We show that the maximally entangled Bell
state can be prepared and maintained with a pulse of an oscillatory electric field. Also we
find that although the Coulomb repulsion between the two electrons is very strong, dynamical
localization can fully build up in the system parameter manifold which corresponds to the
exact crossing of the quasienergies developed from the unperturbed nearly degenerate levels.

Section 2 begins with a description of our model system. Section 3 examines the dynamics
of the initial ground state in the presence of a constant electric field. Section 4 investigates the
creation and preservation of the entanglement between the two interacting electrons. Section 5
studies dynamical localization in the presence of an oscillatory field. Section 6 makes some
concluding remarks.

2. The model

For simplicity, we suppose there is just one energy level on each quantum dot. The Hamiltonian
defining the system reads

Ĥ (t) = V (t)

2

∑
σ

(ĉ+
1σ ĉ1σ − ĉ+

2σ ĉ2σ )+ w
∑
σ

(ĉ+
1σ ĉ2σ + ĉ+

2σ ĉ1σ )

+ U1(n̂1↑n̂1↓ + n̂2↑n̂2↓)+ U2

∑
σ1,σ2

n̂1σ1n̂2σ2. (1)

Here, ĉ+
1σ (ĉ+

2σ ) creates an electron of spinσ in the left (right) dot. If the external electric
field is applied only to the dots, it will cause a proportionate shift in the energy levels,
ε1,2(t) = ±V (t)/2. w describes the coupling between the dots.U1 andU2 denote the intradot
and interdot Coulomb interactions, respectively. Since there are two electrons in the system,
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we can write the Hamiltonian (1) in the space spanned by the two-particle basis vectors|1̄ 1̄〉,
|11〉, |1̄1〉, |11̄〉, |20〉, and|02〉, where|mn〉 denotes the state ofm electrons in the left dot andn
electrons in the right dot, and the values 1 and1̄ indicate up spin and down spin, respectively.
Therefore the Hamiltonian is described by a 6× 6 matrix. If we replace the basis vectors|1̄1〉
and|11̄〉 by (|1̄1〉 − |11̄〉)/√2 and(|1̄1〉 + |11̄〉)/√2, then the Hamiltonian can be written as

Ĥ (t) =
(
U2Î3×3 0

0 Ĥ1(t)

)
= U2Î3×3 ⊕ Ĥ 1(t) (2)

whereÎ 3×3 is a 3× 3 unit matrix andĤ1(t) is presented as

Ĥ1(t) =

U1 + V (t)

√
2w 0√

2w U2
√

2w

0
√

2w U1 − V (t)


 . (3)

Obviously the two-particle basis vectors|1̄ 1̄〉, |11〉, and(|1̄1〉− |11̄〉)/√2 are the eigenvectors
of the Hamiltonian (2) and constitute the spin-triplet subspace in which the electron number on
each quantum dot is invariably one and has no response to the presence of the driving electric
field. Hence we will focus our attention on the reduced spin-singlet HamiltonianĤ1(t). Note
thatĤ1(t) can be conveniently rewritten in terms of the angular momentum operators in the
J = 1 subspace:

Ĥ1(t) = U2 + V (t)Ĵ z + κĴ
2
z + 2wĴ x (4)

whereκ = U1 −U2, andĴ i (i = x, y, z) areJ = 1 angular momentum operators defined as

Ĵ x = 1√
2

( 0 1 0
1 0 1
0 1 0

)

Ĵ y = i√
2

( 0 −1 0
1 0 −1
0 1 0

)

and

Ĵ z =
(1 0 0

0 0 0
0 0 −1

)
.

Therefore, the localized two-particle state|20〉 is equivalent to the eigenstate|jz = 1〉 of Ĵ z and
|02〉 to the state|jz = −1〉, whereas the delocalized state(|1̄1〉 + |11̄〉)/√2 is identical to the
state|jz = 0〉. In the following we will denote|20〉 as|LL 〉, |02〉 as|RR〉, and(|1̄1〉+|11̄〉)/√2
as|LR〉.

The first term in equation (4) denotes a constant energy shift, and will be neglected in
the following discussions. The evolution of any initial state|�(0)〉 under the action of̂H1 in
equation (4) can be expressed as

|�(t)〉 = C1(t)|LL〉 + C2(t)|LR〉 + C3(t)|RR〉
where the coefficientsCk(t) are determined by the time-dependent Schrödinger equation

i


 Ċ1

Ċ2

Ċ3


 =


 κ + V (t)

√
2w 0√

2w 0
√

2w

0
√

2w κ − V (t)


(C1

C2
C3

)
(5)
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and the chosen initial condition|�(0)〉. In the absence of external electric fields, the
eigenenergies and eigenstates (not normalized) of the HamiltonianĤ 1 can be easily solved as
follows: ∣∣∣ϕ(S)1

〉
= |LL 〉 − b√

2w
|LR〉 + |RR〉 E1 = a∣∣∣ϕ(A)2

〉
= −|LL〉 + |RR〉 E2 = κ∣∣∣ϕ(S)3

〉
= |LL 〉 − a√

2w
|LR〉 + |RR〉 E3 = b

(6)

where we have defined

a = (κ −
√
κ2 + 16w2)/2 b = (

√
κ2 + 16w2 + κ)/2.

The superscript S (A) on the left-hand sides of equation (6) denotes symmetry (antisymmetry)
under the spatial reflection operation. We can see from equation (6) that due to strong Coulomb
repulsion, the symmetric ground state is dominated by the delocalized state|LR〉, whereas the
other two eigenstates are nearly degenerate and dominated by the two localized states|LL 〉 and
|RR〉. Note that although|ϕ(A)2 〉 and|ϕ(S)3 〉 look like a doublet in a single-electron double-trap
system which consists of a pair of symmetric and antisymmetric single-particle states, there
are fundamental differences for the present two-particle system. In fact, the superposition
of the two localized states|LL 〉 and|RR〉 implies that the spatial wave functions of the two
electrons have been entangled, in the usual sense that they are not factorized into single-particle
states. To describe the degree of entanglement, we define the maximally entangled Bell state
|�Bell〉 = (|RR〉 + eiφ|LL〉)/√2 with arbitrary phase angleφ. Therefore the probabilityρBell

of finding the maximally entangled Bell state in a coupled quantum dot is given by

ρBell = 1

2

∣∣C3(t) + eiφC1(t)
∣∣2 . (7)

3. Localization preparation from the ground state

We start the search for localization with the simplest case, that of a constant electric field
V (t) = V0. Beforet = 0 the system is in the delocalized ground state|ϕ(S)1 〉, and att = 0
the fieldV0 is switched on suddenly. The eigenenergies and eigenstates associated with the
time-independent Hamiltonian (4) can be solved analytically for general values ofV0. For
brevity we do not give the explicit expressions here. Instead, we illustrate in figure 1 the
spectrum features by plotting the eigenenergies as a function ofV0 (w = 0.02κ). It is shown
in figure 1 that on increasing the value ofV0 adiabatically, the energiesE1 andE2 approach
each other. In particular, when the value of the electric field satisfies

V0 = κ (8)

an avoided crossing occurs in the energy spectrum. To elucidate the effect of the avoided
crossing displayed in figure 1 on the quantum mechanical behaviour of the system we examine
the dynamics of the initial ground state. Figures 2(a)–2(e) show the time evolutions of
the probabilitiesPLR(t) = |C2(t)|2 of finding the two electrons in the different dots (solid
lines), PLL (t) = |C1(t)|2 of finding the two electrons in the left dot (dashed lines), and
PRR(t) = |C3(t)|2 of finding the electrons in the right dots (dotted lines). The values ofV0/κ

in these five figures are respectively 0.8, 0.9, 1.0, 1.1, and 1.2. It is revealed in figures 2(a)–2(e)
that on changing the value of the constant fieldV0 towards the avoided crossing, the oscillation
amplitudes ofPLR(t) andPRR(t) increase more and more—until, at the avoided crossing point
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Figure 1. The energy spectrum of the driven two-electron system as a function of the strength of
a constant electric field withw = 0.02κ.

whereV0/κ = 1, bothPLR(t) andPRR(t) oscillate between 0 and 1 with a definite period,
meaning that a complete resonance (Rabi oscillation) takes place between the delocalized state
|LR〉 and localized state|RR〉. After the value ofV0 exceedsκ , the oscillations decrease little
by little. This represents a localization–delocalization transition process. The most important
feature revealed in figure 2 is that when the system parameters are chosen near the avoided
crossing, the dynamics can be approximated by an effective two-state system consisting of
|LR〉 and|RR〉. In this case, because the population of the localized state|LL〉 in the left dot
remains very small during time evolution, we can neglect its contribution and describe the
dynamics by the reduced Schrödinger equation

i

(
Ċ2

Ċ3

)
=
(

0
√

2w√
2w 0

)(
C2(t)

C3(t)

)
. (9)

Thus with the initial state|�(0)〉 = |ϕ(S)1 〉 � −|LR〉, we have the time evolution of the system
as follows:

C2(t) = −cos(
√

2wt)

C3(t) = exp(−iπ/2) sin(
√

2wt).
(10)

Clearly our two-state approximation, equation (10), describes the system’s evolution very well
when compared with the exact numerical result shown in figure 2(c), implying complete Rabi
oscillation between the localized state|RR〉 and delocalized state|LR〉 with oscillation period
T = π/

√
2w.

Once the two electrons are localized, they can be forced to stay localized permanently
by switching the field to another nonzero value (figure 3, top panel). We show this effect
in figure 3 (bottom panel). This trivial way of maintaining localization in a two-electron
double-dot system originates from the fact that, due to the presence of an electric field, the
energy mismatch among the three two-particle states prohibits tunnelling from the localized
state|RR〉 to the other states.
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Figure 2. The time evolution of the probabilitiesPLR (solid lines),PLL (dashed lines), andPRR
(dotted lines) for the following values of the strength of a constant electric field: (a)V0 = 0.8κ;
(b) V0 = 0.9κ; (c) V0 = 1.0κ; (d) V0 = 1.1κ; (e)V0 = 1.2κ. For these figures,w = 0.02κ.
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Figure 3. Top: the electric field that is imposed on the double-quantum-dot system. Bottom: the
time evolution of the probabilitiesPLR (solid line) andPRR (dotted line) under the influence of
the electric field shown in the top panel. The other system parameters are the same as those used
for figure 2(c).

4. Entanglement of two interacting electrons

If the constant electric field is turned off (figure 4(a)) at a time when the two electrons are fully
localized in the right dot, as shown in figure 2(c), the strong Coulomb repulsion will induce
the resonance between the two localized states|RR〉 and|LL〉 during subsequent evolution,
whereas the delocalized state|LR〉 is inhibited from being occupied. This dark property of
the delocalized state is shown in figure 4(b). It is revealed in figure 4(b) that the value ofPLR
is almost zero during the time evolution, suggesting that the two electrons are never separated
into different dots. While cycling from one dot to the other, the two electrons are correlated
and entangled, and very likely to be found in the same dot.

The entanglement between the two electrons illustrated in figure 4(b) can be well described
by a two-state approximation of equation (5). Because the population of the delocalized state
|LR〉 remains very small after timet0 = T/2 as shown in figure 4(b), we can approximate
C2(t) (t > t0) in equation (5) to first order ofw/κ :

C2(t) = −√
2w

κ
exp(−iκt)[C1(t) + C3(t)]. (11)

By introducingC2(t) from equation (11) in the Schrödinger equation we reduce the system to
an effective two-level system. The reduced equation has the form

i

(
Ċ1

Ċ3

)
=
(

κ −2w2/κ

−2w2/κ κ

)(
C1(t)

C3(t)

)
. (12)
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Figure 4. (a) The electric field that is imposed on the double-quantum-dot system. (b) The
time evolution of the probabilitiesPLR (solid line), PLL (dashed line), andPRR (dotted line)
under the influence of the electric field shown in (a). (c) The time evolution of the probability
ρBell of finding the maximally entangled Bell state(φ = −π/2) in the presence of the Coulomb
interaction (solid line) and in the absence of the Coulomb interaction (dotted line). For these
figures,w = 0.02κ.

Thus with the initial state|�(t0)〉 = −i|RR〉 (equation (10)), we have the following time
evolution of the system:

C1(t) = exp(−iκt) sin(2w2t/κ)

C3(t) = −i exp(−iκt) cos(2w2t/κ).
(13)

Substituting equation (13) into equation (7) we have the probability of finding the Bell state
(|RR〉 + eiφ|LL〉)/√2 at timet :

ρBell(t) = 1

2
[1 + sin(ωr t) cos(φ + π/2)] (14)

whereωr = 4w2/κ . In particular we can see from equations (13), (14) that the system’s
quantum state at time

τ = πκ/8w2 + t0 (15)

corresponds to aφ = −π/2 maximally entangled Bell state(|RR〉 − i|LL 〉)/√2.
We present in figure 4(c) the probability of finding the maximally entangled Bell state

(φ = −π/2) as a function of time. The system parameters are the same as those used
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in figure 4(b). Clearly our two-state approximation (equation (14)) describes the system’s
evolution very well as compared with the exact numerical solution shown in figure 4(c),
implying that the system’s quantum state at timeτ corresponds to a maximally entangled Bell
state(φ = −π/2). However, the degree of entanglement degrades after timeτ , a consequence
of the fact that the state at timeτ is not an eigenstate of the field-free Hamiltonian. So a single
pulse of a constant electric field cannot preserve the entanglement in our system. Note that no
maximally entangled Bell-state generation is possible if the effective Coulomb interactionκ ,
along with the electric field, is turned off, as shown in figure 4(c) (dotted line). This implies
an essential role of the nonlinear Coulomb interaction in forming the entanglement between
the electrons.

We turn now to discussion of the entanglement in the presence of a sinusoidal field of the
form V (t) = V1 cosωt . We present in figures 5(a)–5(e) populations of the three two-particle
states, where the values ofω/κ in these five figures are respectively 0.9, 0.95, 1.0, 1.05, and
1.1. It is revealed in figure 5 that, contrary to the case for constant field shown in figure 2,
where onlyPRR increased at the expense ofPLR, the reduction ofPLR results in an increase
of bothPRR andPLL with the same in-phase oscillations. Also we can see in figure 5 that
on increasing the value of the driving frequencyω towards the Coulomb interactionκ , the
oscillation amplitudes ofPRR andPLL increase little by little—until when the value ofω
satisfies the one-photon resonance condition

ω = κ (16)

the two amplitudes reach their maximal values 0.5, which implies maximal entanglement
between the two electrons at the time whenPRR = PLL = 0.5.

Once the two electrons are in the maximally entangled Bell state, they can be kept
maximally entangled by suddenly turning off the oscillatory electric field (figure 6(a)). We
show this effect in figures 6(b),6(c) where figure 6(b) plots the time evolution of the occupations
of three two-particle states and figure 6(c) the probability of finding the maximally entangled
Bell state withφ = π . It is revealed in figure 6(b) that a pulse of an oscillatory electric field
induces the two electrons to stay at the same dot, while each of them occupies either of the dots
with the same probability. It is shown in figure 6(c) that the two electrons remain maximally
entangled during the time evolution after the oscillatory field is turned off. This is different
from the case shown in figure 4(b) where the degree of entanglement varies with time. The
control of the maximally entangled quantum states in solid-state systems is of great interest.
Loss and Di Vincenzo studied entanglement in double quantum dots involving the spin degree
of freedom [18]. Here we have identified a complementary method that creates and preserves
entanglement between the spatial wave functions of two electrons in a coupled quantum dot.

5. Dynamical localization of two interacting electrons

In section 3 we showed that a trivial way of maintaining localization is to suddenly shift
the constant field to another value once the electrons are in the localized state|RR〉. In this
section we study the possibility of maintaining the localization with the oscillatory electric
field V (t) = V1 cosωt . Because the localized state|RR〉 may always be produced from the
ground state by turning on a resonant constant field of durationπ/

√
2w, we therefore suppose

in the following discussions that the system starts with the localized state|RR〉.
In the presence of a time-dependent electric field, the evolution of the system cannot be

solved in a closed form because [H1(t1),H1(t2)] 
= 0. Within the Floquet formalism, we
numerically integrate the equation of motion for the time evolution operator:

i
∂

∂t
Û(t,0) = Ĥ1(t)Û (t,0) (17)
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Figure 5. The time evolution of the probabilitiesPLR (solid lines),PLL (dashed lines), andPRR
(dotted lines) for the following values of the frequency of an oscillatory electric field: (a)ω = 0.9κ;
(b) ω = 0.95κ; (c) ω = 1.0κ; (d) ω = 1.05κ; (e) ω = 1.1κ. The other system parameters are
V = 2.0κ andw = 0.02κ.

and diagonalizêU(2π/ω,0) to obtain the quasienergies{εα,l} and Floquet states{|uα,l(0)〉} at
time t = 0. Here the quasienergiesεα,l are confined to the first Brillouin zone and, atV1 = 0,
connected toEα + lω. The indexl counts ‘how many photons’ have to be subtracted from the
unperturbed energy levelEα in order to arrive in the first Brillouin zone. The Floquet state
|uα,l(t)〉 can be obtained from the eigenvalue equation(

H1(t) − i
∂

∂t

)
|uα,l(t)〉 = εα,l |uα,l(t)〉 (18)

whereα = 1,2,3. Note that the Hamiltonian (4) remains invariant under the combined spatial
reflection and time translationt → t + π/ω. An immediate consequence of this dynamical
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Figure 6. (a) The electric field that is imposed on the double-quantum-dot system. (b) The time
evolution of the probabilitiesPLR (solid line),PLL (dashed line), andPRR (dotted line) under the
influence of the electric field shown in (a). (c) The time evolution of the probabilityρBell of finding
the maximally entangled Bell state(φ = π). The other system parameters are the same as those
used for figure 5(c).

symmetry is that each Floquet state is either odd or even [21, 22]. When the driving amplitude
is switched off adiabatically,V1 → 0, the Floquet states are connected with the stationary
eigenstates in equation (6) as follows [1]:

|uα,l(t)〉 →
∣∣∣u0

α,l(t)
〉
= ϕα exp(ilωt). (19)

Thus we can easily determine the dynamical parity of the Floquet state|uα,l(t)〉.
We present in figures 7(a), 7(b) the quasienergies versus the amplitudeV0, where the

values of effective Coulomb interactionκ are respectively chosen to be 2.3ω and 2.84ω. In
figure 7(a) we see that the quasienergiesε2,−2 andε3,−2 with different parity form an exact
crossing atV0 = 1.244 48ω. WhenV0 → 0, all three quasienergies arrive at the unperturbed
cases forε0

1,0 = E1, ε0
2,−2 = E2 − 2ω, ε0

3,−2 = E3 − 2ω. For(2l+ 1)ω → E3 −E1, ε1,0 and
ε3,−(2l+1), having different parity, are also allowed to cross, as shown in figure 7(b) where the
value of the index isl = 1. In exactly the same way, when 2lω → E2−E1, two quasienergies
ε1,0 andε2,−2l can develop into a crossing for a special value of the amplitudeV0 (not shown
here). In addition, the characteristic double-cone structure in figure 7(b) reveals that the
quasienergiesε1,0 andε2,−3 form an avoided crossing with the centre atV0 = 1.053 83ω.
This avoided crossing originates as a result of interaction between the Floquet states|u1,0〉
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Figure 7. The Floquet spectrum of the driven two-electron system as a function of the strength
of the oscillatory electric field for the following values of the effective Coulomb interaction:
(a)κ = 2.3ω; (b) κ = 2.84ω. For these figures,w = 0.25ω.

and|u2,−3〉, both having the same parity. Similarly, when 2lω → E3 −E1, two quasienergies
ε1,0 andε3,−2l are allowed to develop into the avoided crossing.

To elucidate the effect of the exact crossing on the quantum mechanical behaviour of
the system, we present in figure 8(a) the time evolution ofPRR(t) at integer multiples of the
driving period with the system parameters corresponding to the exact crossing ofε2,−2 and
ε3,−2 shown in figure 7(a). For comparison, we also present in figure 8(b) the time evolution
of PRR(t) for the value of the amplitudeV0 = 1.1ω. In figure 8(a) we can see that during the
development over time the probabilityPRR(nT ) remains near 1 as if the two electrons were
frozen in the left dot. Moreover, time-resolved evolution over a few periods of the driving
field (not depicted) shows that the two electrons stay localized also at timest 
= nT . Thus at
the exact crossing ofε2,−2 andε3,−2 the dynamical localization builds up, although the strong
on-site Coulomb repulsion between the two electrons prevents the system from behaving in
this way. Note that the valueκ used in figure 7(a) corresponds to the unperturbed energies
E1 = −0.1034ω, E2 = 2.3ω, andE3 = 2.4034ω. BecauseE1 is much lower thanE2 and
E3, the unperturbed eigenstatesϕ(A)2 andϕ(S)3 which both have very small components of the
delocalized two-particle state|LR〉 become comparable to a doublet in the symmetrical double-
dot system. So it is expected that at the crossing of the quasienergiesε2,−2 andε3,−2 the initial
localized state can be approximated by a superposition of degenerate Floquet states|u2,−2(0)〉
and|u3,−2(0)〉, which remains localized in perpetuity. This is like the case of a single-electron,
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Figure 8. The time evolution of the probabilityPRR at integer multiples of the driving period for
three different kinds of system parameter values: (a)κ = 2.3 andV1 = 1.244 48, corresponding
to the exact level crossing shown in figure 7(a); (b)κ = 2.3 andV1 = 1.1, for comparison with
the case shown in (a); (c)κ = 2.84 andV1 = 0.5834, corresponding to the exact level crossing
shown in figure 7(b).

two-level system consisting of the lowest symmetric and antisymmetric states of the double-
trap potential, where perfect localization can be achieved at the exact crossing between the two
Floquet quasienergies. It is found numerically that even if the Coulomb interactionκ is very
strong, the dynamical localization can still occur as long as the quasienergiesε2,m andε3,m
cross each other. Moreover, the value of the system parameter 2V0/ω corresponding to the first
crossing is about 2.4, which is the root of the zero-order Bessel function, suggesting that in this
situation the dynamical localization can be approximated by the driven two-level model. If
the system parameters deviate from the level crossing, then the dynamical localization ceases
to exist andPRR(t) oscillates between 0 and 1 in the development over time, as shown in
figure 8(b).

We turn to studying the dynamics of the system at the crossing of the quasienergiesε1,0and
ε3,−3 in figure 7(b), using the same initial-state condition. The result is shown in figure 8(c).
Contrary to that shown in figure 8(a), the result shown in figure 8(c) indicates that at the
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level crossing ofε1,0 andε3,−3, dynamical localization does not happen andPRR(t) oscillates
between 0 and 1. Note that the level crossing ofε1,0 andε3,−3 induces strong participation of
the Floquet state|u1,0(t)〉 during the time evolution of the system, and the largest component
in |u1,0(t)〉 is the delocalized two-particle state|LR〉. Therefore the strong mixture of the
Floquet state|u1,0(t)〉 in the evolution of the system will lead to complete destruction of the
dynamical localization, as shown in figure 8(c).

In the above discussions we have ignored higher-lying single-particle states; this requires
that the frequency of the external field is much lower than the single-particle level spacing. In
the presence of decoherence due to environmental dissipation, a long dephasing time would
be required. A detailed analysis of the effect of a decohering environment will be given
elsewhere.

6. Conclusions

In conclusion, we have studied the localization and entanglement of two interacting electrons
in a double-quantum-dot system. We have shown that:

(i) The presence of a constant electric field satisfying the resonance conditionV0 = κ induces
complete Rabi oscillation between the delocalized state|LR〉 and the localized state|RR〉.
Thus, starting from the delocalized ground state, we can prepare a fully localized state.
The localization can be maintained by switching the field to another nonzero value.

(ii) The two electrons oscillate between the delocalized state and two localized states in the
presence of a resonant oscillatory field. With the oscillatory field turned off at a time
when the probabilities of finding the electrons in the left and right dot are identically 0.5,
the two electrons remain maximally entangled in the subsequent time evolution. Thus a
selective pulse of an oscillatory field can be used to implement maximally entangled Bell
states in a two-electron two-dot system.

(iii) Although the Coulomb repulsion is very strong, the two initially localized electrons can
stay localized during the time evolution. We expect the present results to be useful in
exploiting the coherent control of electrons in quantum dot systems.
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